
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Wireless Communications and Propagation Aspects
Mérouane Debbah

Alcatel-Lucent Chair on Flexible Radio
SUPELEC

Plateau de Moulon
3 rue Joliot-Curie

B.P. 91192
GIF SUR YVETTE CEDEX, France
merouane.debbah@supelec.fr.

ABSTRACT. A recent article in IEEE spectrum dedicated to wireless technologies provided
some figures recalled in the following table.

Technology Data Rate Output Power Range Frequency
(Mb/s) (mW) (meters) Band

Bluetooth 1-2 100 100 2.4 GHz
IrDa 4 100 mW/sr 1-2 Infrared
Ultrawideband 100-500 1 10 3.1-10.6 GHz
IEEE802.11a 54 40-800 20 5GHz
IEEE802.11b 11 200 100 2.4 GHz
(Wi-Fi)
UMTS 2Mb/s 250 more than 2 GHz

100 meters

Table 1. Comparing Wireless Technologies.
A closer look at the numbers shows how diverse the wireless link is going to be. Why are

there so many technologies for the same goal: the transmission of information through a wireless
medium? Is there any relationship between data rate, output power, range and frequency band?
Which technology to choose? This course is intended to give some partial answers to the previous
questions by presenting several technologies, their advantages as well as their drawbacks.
In these notes, we will focus on channel modeling. Two approaches are provided. In part 1, the
SISO (Single Input Single Output) time varying channel response is modeled as the sample path
of a random process, whose statistics depend on the underlying physical model. In part 2, we
use an information theoretic approach. The information provided by the physical environment
to model the MIMO (Multiple Input Multiple Ouput) link. In this case, a general procedure to
translate information into probability assignement is given through the use of the principle of
maximum entropy.
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1 SISO channel modeling

This chapter presents an introduction to the mathematical modeling of time-varying linear
Single Input Single Output (SISO ) channels typical of mobile wireless communications, known
as fading channels. The material is mainly taken from [1] and from [2].

1.1 Doppler effect and deterministic fading

Consider the situation of Fig. 1, where there exists a single line-of-sight (LOS) propagation path
between the transmitter and the receiver, but where the position of the receiver relative to the
transmitter changes in time. Let the distance between transmitter and receiver at time t be
given by

d0(t) = −v0t + d0

(this is equivalent to approximate a general time-varying distance d0(t) with its first-order Taylor
expansion). Let the transmitted (bandpass) signal be

s(t) = Re{x(t) exp(j2πfct)}

where x(t) is the complex envelope and fc is the carrier frequency. In the absence of other
impairments, the received signal is just a delayed version of the transmitted signal, where the
propagation delay is given by

τ0(t) = d0(t)/c = −(v0/c)t + d0/c

and where c denotes the speed of light. In terrestrial wireless applications, v0/c is very small.
However, the term ξ0 = fcv0/c can be non-negligible since the carrier frequency fc is normally
large. For example, in GSM we have fc ≈ 900 MHz. Then, a mobile travelling at v0 = 100
km/h yields ξ0 = 83.33 Hz. The received signal can be written as

r(t) = Re{x(t− τ0(t)) exp(j2πfc(t− τ0(t))}
≈ Re{x(t− τ0) exp(j2π(fc + ξ0)t) exp(jφ0)} (1)

where we let φ0 = −2πfcd0/c and τ0 = d0/c, and we have used the fact that, since v0/c is small,
x(t− τ0(t)) ≈ x(t−τ0) over the (relatively short) observation interval. From (1) we observe that
the time-varying propagation delay causes a shift of the carrier frequency by ξ0 (called Doppler
effect) and a carrier phase shift by φ0.

Next, consider the situation of Fig. 2, where in addition to the LOS path, there is a second
propagation path due to a reflecting object (e.g., a building or a hill). Let di(t) = −vit + di, for
i = 0, 1, be the propagation distances, where v0 and v1 denote the relative speed of the receiver
with respect to the transmitter and to the reflector, respectively (in this case, v1 = −v0 cosα).
By defining ξi = fcvi/c, φi = −2πfcdi/c and τi = di/c, we obtain the received signal as

r(t) ≈ Re{x(t− τ0) exp(jφ0) exp(j2π(fc + ξ0)t) + ax(t− τ1) exp(jφ1) exp(j2π(fc + ξ1)t)}

= Re

{(
1∑

i=0

ρix(t− τi) exp(j2πξit)

)
exp(j2πfct)

)
(2)
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Figure 1: Line of sight propagation with a mobile terminal.

where a is a complex attenuation due to reflection, and we have defined the complex coefficients
ρ0 = exp(jφ0) and ρ1 = a exp(jφ1). The complex envelope of the received signal (2) is

y(t) =
1∑

i=0

ρix(t− τi) exp(j2πξit)

Suppose that x(t) varies slowly, so that x(t) ≈ x, constant over the observation interval. Nev-
ertheless, the envelope of the received signal may be subject to time-variations. In fact, we
have

|y(t)| = |xρ0|
∣∣∣∣1 +

ρ1

ρ0
exp(j2π(ξ1 − ξ0)t)

∣∣∣∣
= A

√
1 + b2 + 2b cos(2π∆ξt + ∆φ) (3)

where we let A = |xρ0|, ∆ξ = ξ1 − ξ0 and ρ1/ρ0 = b exp(j∆φ), with b ∈ R+. From (3) we see
that if the observation interval is larger than 1/∆ξ, the received signal envelope changes between
a maximum value A|1 + b| to a minimum value A|1 − b|. The rate of variation is given by the
Doppler frequency spread ∆ξ, given by the difference between the maximum and the minimum
Doppler frequency shifts. The Doppler frequency spread characterizes the time selectivity of the
channel.

In conclusion, we have seen that with more than one propagation path the receiver signal
envelope changes in time even if the transmitted signal envelope is kept constant. This effect
is called fading, and channels characterized by this type of time-variations are called fading
channels.
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Figure 2: Two-ray propagation with a mobile terminal.

1.2 Wide-sense stationary uncorrelated scattering model

In the previous section we considered the simple case of two paths, whose characteristic is
perfectly known. In this case, the time-varying channel is deterministic. However, in a real
wireless communication situation, propagation may go through an unknown number of paths,
each of which has unknown characteristics. Moreover, the number of paths is normally very
large. Therefore, it is convenient to describe the resulting fading channel by a statistical model.
In other words, the time-varying channel response is modeled as the sample path of a random
process, whose statistics depend on the underlying physical model.

Consider the situation of Fig. 3, where propagation goes through a large number of paths,
each due to a scattering element located in some scattering region. In analogy with what was
done before, we can write the complex envelope of the received signal as

y(t) =
∑

i

ρix(t− τi) exp(j2πξit) (4)

where the index i runs over the scattering elements and where the scattering element i is charac-
terized by the complex coefficient ρi and by the Doppler shift ξi. When the number of scattering
elements is large, determining each ρi is either impossible or impractical. Moreover, from an
engineering point of view it is more interesting to consider classes of channels with some common
features, and describe them in terms of their statistics. Thus, the ρi’s are modelled as random
variables, with some joint distribution. A common simplifying assumption, followed in most
literature on the field and supported by physical arguments and experimental evidence [3, 2], is
that the scattering coefficients ρi are zero-mean pairwise uncorrelated, i.e., E[ρiρ

∗
j ] = 0 for all
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Figure 3: Scattering from many elements, without line of sight propagation.

i 6= j. This is referred to as the Uncorrelated Scattering (US) assumption, and from now on we
restrict to this case.

We start with considering the following particular case, very important in applications. 1

Discrete multipath channel. Assume that the scattering elements are clustered, so that there
exist P clusters. The paths in the same cluster have similar propagation delay. Let τp be the
delay of the p-th cluster and Pp the set of indices of scattering elements of the p-th cluster.
Then, (4) can be written as

y(t) =
P−1∑

p=0


∑

i∈Pp

ρi exp(j2πξit)


x(t− τp)

=
P−1∑

p=0

cp(t)x(t− τp) (5)

This can be interpreted as the output of the complex baseband equivalent time-varying linear
channel with impulse response

c(t, τ) =
P−1∑

p=0

cp(t)δ(τ − τp) (6)

1All channel models specified by ETSI as standard test models for GSM belong to this class [4].
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and

C(t, f) =
P−1∑

p=0

cp(t)e−j2πfτp (7)

where cp(t) =
∑

i∈Pp
ρi exp(j2πξit). The above channel can be represented as a tapped delay-line

with time-varying coefficients cp(t) and non-uniformly spaced delays τp. Each process cp(t) is
given by the superposition of several complex sinusoids at different frequencies {ξi : i ∈ Pp},
with different amplitudes and (uniformly distributed) phases, due to the random coefficients
{ρi : i ∈ Pp}. If each cluster is made of a very large number of scattering elements, each
giving a very small contribution to the received signal, we can safely use the Central Limit
Theorem [5] and conclude that the cp(t)’s are jointly circularly symmetric complex Gaussian
processes with mean zero. Since the clusters Pp are disjoint, because of the US assumption we
have E[cp(t)cq(t′)∗] = 0 for all p 6= q and t, t′. Therefore, the path gains cp(t) are statistically
independent2. ♦

Diffuse scattering. Next, we consider the more general case of diffuse scattering, where the
scattering elements may be arbitrarily distributed over a certain delay interval T, and over a
certain Doppler frequency interval D. Let ρ(ξ, τ) for ξ ∈ D and τ ∈ T be the complex coefficient
due to an elementary scattering element at Doppler shift ξ and delay τ . We write (4) in the
following integral form

y(t) =
∫

D

∫

T
ρ(ξ, τ)x(t− τ) exp(j2πξt)dξdτ

=
∫

T
c(t, τ)x(t− τ)dτ (8)

where we define the channel impulse response

c(t, τ) =
∫

D
ρ(ξ, τ) exp(j2πξt)dξ (9)

In words, c(t, τ) is the response of the channel at time t to an impulse at time t − τ . Notice
that c(t, τ) is obtained from ρ(ξ, τ) by inverse Fourier transform with respect to the Doppler
frequency variable ξ. The fact that the fading channel is a linear time-varying system is an
obvious consequence of the fact that we expressed the channel output as the superposition of
weighted and delayed replicas of the input, where the weighting coefficients ρ(ξ, τ) exp(j2πξt)
depend on t.

Usually, ρ(ξ, τ) is assumed to be a zero-mean complex circularly symmetric independent Gaus-
sian random field, even though no particular clustering argument is advocated. This assumption
is motivated by some experimental evidence (see [3] and references therein) and will be followed
here. Since c(t, τ) is obtained from ρ(ξ, τ) by a linear transformation, it is also Gaussian with
circular symmetry [6], although correlated. It follows that the channel is fully characterized by
the second order statistics of ρ(ξ, τ) or, equivalently, of c(t, τ). This is given next, in terms of
some functions that, because of their importance, have special names.

2Note that the result was shown for the single bounce model. It can be shown that the i.i.d. Gaussian model
for the path gains cp(t) persists in other cases if one uses maximum entropy arguments (see chapter 2)
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Scattering function. From the US assumption, the autocorrelation between scattering coeffi-
cients ρ(ξ, τ) and ρ(ξ′, τ ′) is given by

E[ρ(ξ, τ)ρ(ξ′, τ ′)∗] = σ(ξ, τ)δ(ξ − ξ′)δ(τ − τ ′)

where we have defined the function σ(ξ, τ) = E[|ρ(ξ, τ)|2]. This is called scattering function and
describes the average received power from scattering at delay τ and Doppler shift ξ.

Time-delay autocorrelation function. Consider the autocorrelation function E[c(t, τ)c(t′, τ ′)∗]
of the channel impulse response. By using (9), this can be written as

E[c(t, τ)c(t′, τ ′)∗] = E

[∫ ∫
ρ(ξ, τ)ρ(ξ′, τ ′)∗ exp(j2πξt) exp(−j2πξ′t′)dξdξ′

]

=
∫ ∫

σ(ξ, τ)δ(ξ − ξ′)δ(τ − τ ′) exp(j2πξt) exp(−j2πξ′t′)dξdξ′

=
∫

σ(ξ, τ) exp(j2πξ(t− t′))dξδ(τ − τ ′)

= φ(t− t′, τ)δ(τ − τ ′)

where the function φ(∆t, τ) =
∫

σ(ξ, τ) exp(j2πξ∆t)dξ is the autocorrelation function of the
channel impulse response, seen as a random process with respect to the variable t, at delay τ .
It is important to notice that c(t, τ) is wide-sense stationary (WSS) with respect to t, for every
τ , since E[c(t, τ)c(t′, τ)∗] depends only on the difference t− t′ and not individually on t and t′.
For this reason, this channel model belongs to the more general class of wide-sense stationary
US (WSSUS) channels, i.e. time-varying channels whose impulse response c(t, τ) is WSS with
respect to t and uncorrelated with respect to τ .

Time-frequency autocorrelation function. Let C(t, f) =
∫

c(t, τ) exp(−j2πfτ)dτ3 be the
time-varying transfer function of the channel with impulse response c(t, τ). The autocorrelation
function E[C(t, f)C(t′, f ′)∗] is given by

E[C(t, f)C(t′, f ′)∗] = E

[∫ ∫
c(t, τ)c(t′, τ ′)∗ exp(−j2πfτ) exp(j2πf ′τ ′)dτdτ ′

]

=
∫ ∫

φ(t− t′, τ)δ(τ − τ ′) exp(−j2πfτ) exp(j2πf ′τ ′)dτdτ ′

=
∫

φ(t− t′, τ) exp(−j2π(f − f ′)τ)dτ

= Φ(t− t′, f − f ′)

where the function Φ(∆t, ∆f) =
∫

φ(∆t, τ) exp(−j2π∆fτ)dτ is the autocorrelation of the chan-
nel transfer function at frequencies separated by ∆f and time separated by ∆t. From the
definition of φ(∆t, τ) we get the following two-dimensional Fourier transform relation between
the time-frequency autocorrelation and the scattering function

Φ(∆t,∆f) =
∫ ∫

σ(ξ, τ) exp(j2πξ∆t) exp(−j2π∆fτ)dξdτ (10)

3Note that C(t, f) =
∫

c(t, τ) exp(−j2πfτ)dτ and ρ(ξ, τ) =
∫

c(t, τ) exp(−j2πξt)dt.
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Delay-intensity profile and Doppler spectrum. It is customary to describe fading channels in
terms of two one-dimensional functions derived from the scattering function: the delay-intensity
profile and the Doppler spectrum. The delay intensity profile is defined by

P (τ) =
∫

σ(ξ, τ)dξ = φ(0, τ) (11)

and describes the total average scattering power at delay τ . The support of P (τ) is the range
T of the channel delays. Roughly speaking, the “size” of T is a measure of the delay spread Td

of the channel. Several definitions of delay spread are possible. A widely accepted definition is
the root-mean-square (RMS) delay spread

Td =
(∫

T(τ − τ̄)2P (τ)dτ∫
T P (τ)dτ

)1/2

(12)

where τ̄ =
∫
T τP (τ)dτ/

∫
T P (τ)dτ is the mean channel delay. The Doppler spectrum is defined

by

D(ξ) =
∫

σ(ξ, τ)dτ =
∫

Φ(∆t, 0) exp(−j2πξ∆t)d∆t (13)

and describes the total average scattering power at Doppler shift ξ. The support of D(ξ) is the
range D of possible Doppler frequency shifts. Roughly speaking, the “size” of D is a measure
of the Doppler spread Bd of the channel. Several definitions of Doppler spread are possible (at
least as many as of bandwidth). A widely accepted definition is the RMS Doppler spread

Bd =
(∫

D(ξ − ξ̄)2D(ξ)dξ∫
D D(ξ)dξ

)1/2

(14)

where ξ̄ =
∫
D ξD(ξ)dξ/

∫
D D(ξ)dξ is the mean Doppler spread, that is normally equal to zero,

since a non-zero average Doppler spread would correspond just to a deterministic offset of the
carrier frequency, that can be compensated at the receiver.

Separable fading channels. A simplifying assumption, often used in practice, is that the scat-
tering function is separable, i.e. that σ(ξ, τ) = D(ξ)P (τ) (without loss of generality, we consider
a normalized channel where

∫
D(ξ)dξ =

∫
P (τ)dτ =

∫ ∫
σ(ξ, τ)dξdτ = 1). This is motivated by

the fact that P (τ) depends mainly on the spatial distribution of the scattering elements, while
D(ξ) depends mainly on the relative motion between the receiver and the scattering elements.
Several reference channel models specified in international telecommunications standards, given
in terms of P (τ) and D(ξ) assume implicitly the separability property.

1.3 Doppler spectra calculation

In this section we focus on the derivation of the Doppler spectrum D(ξ) from the physical
characteristics of the environment and of the receiver antenna [2, 7]. We focus on a single delay
τ . If the channel is separable, the Doppler spectrum calculated for τ is the actual channel
Doppler spectrum. Otherwise, we should repeat the calculation for every τ , obtaining different
sections of the scattering function, and integrate over all τ .
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In (4), consider only the delays τi = τ . We have

y(t) =
∑

i

ρix(t− τ) exp(j2πξit) = c(t)x(t− τ)

where c(t) =
∑

i ρi exp(j2πξit). By definition, the Doppler spectrum (for delay τ) is the power
spectral density of the process c(t). Now, consider the planar situation of Fig. 4. Let α denote
the azimuth angle, g(α) be the receiver antenna azimuthal gain and p(α) be the average received
power from angle α. With the normalization

∫ π
−π p(α)dα = 1, p(α) can be seen as the probability

of receiving a scattered signal component from direction α. From what seen in the previous
section about Doppler effect, we can express the Doppler frequency shift ξ caused by a scattering
element at angle α as

ξ = Fd cosα

where Fd = fcv/c is the maximum Doppler shift and v is the terminal speed (see Fig. 4). Then,
instead of summing over the scattering index i, we can integrate over the angle α and obtain

c(t) =
∫ π

−π
ρα exp(j2πFd cosαt)dα

where with some abuse of notation we let ραdα be the received signal component at angle α.
The autocorrelation function of c(t) is given by

rc(∆t) = E

[∫ π

−π

∫ π

−π
ραρ∗β exp(j2πFd cosαt) exp(−j2πFd cosβ(t−∆t))dαdβ

]

=
∫ π

−π

∫ π

−π
p(α)g(α)δ(α− β) exp(j2πFd cosαt) exp(−j2πFd cosβ(t−∆t))dαdβ

=
∫ π

−π
p(α)g(α) exp(j2πFd cosα∆t)dα (15)

where we have used the US assumption, so that E[ραρ∗βdαdβ] = p(α)g(α)δ(α−β)dαdβ. Finally,
the desired Doppler spectrum is obtained, by definition, via the Fourier transform D(ξ) =∫

rc(∆t) exp(−j2πξ∆t)d∆t.

Example: Jakes’ Doppler spectrum. Assuming scattered signals arriving from any direction
with equal probability and an omnidirectional receiver antenna, we get p(α) = 1/(2π) and
g(α) = 1. Using these in (15) we obtain

rc(∆t) =
1
2π

∫ π

−π
exp(j2πFd cosα∆t)dα = J0(2πFd∆t)

where J0(x) is the 0-th order Bessel function of the first kind [8]. The above autocorrelation
function is by far the most used and widely accepted autocorrelation model for the mobile
channel, and it is known as Jakes’ model [7]. The corresponding Doppler spectrum is given by

D(ξ) =

{
1

πFd

√
1−ξ2/F 2

d

|ξ| < Fd

0 elsewhere
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Figure 4: Planar geometry for Doppler spectra calculation.

1.4 Qualitative behavior and simplified models

In this section we discuss some qualitative characteristics of fading channels. These describe the
effect of the channel on the transmitted signal and are given in terms of delay spread and Doppler
spread relative to the signal duration and bandwidth. Strictly speaking, finite duration signals
cannot be strictly bandlimited and vice versa. However, since the discussion carried out in this
section is qualitative, we assume that the transmitted passband signal s(t) is mostly concentrated
over an interval of duration T and over a bandwidth W around the carrier frequency fc. Then,
its complex envelope x(t) has a spectrum located around the origin, mostly concentrated in the
interval [−W/2,W/2]. To be consistent with the definitions of RMS delay spread Td and RMS
Doppler spread Bd given previously, we define the RMS signal duration T as

T =
(∫

(t− t̄)2|x(t)|2dt∫ |x(t)|2dt

)1/2

where t̄ =
∫

t|x(t)|2dt/
∫ |x(t)|2dt, and the RMS signal bandwidth W as

W =
(∫

(f − f̄)2|X(f)|2df∫ |X(f)|2df
)1/2

where X(f) is the Fourier transform of x(t) and where f̄ =
∫

f |X(f)|2df/
∫ |X(f)|2df .

Next, we classify fading channels according to their time-frequency spreading effect and multi-
plicative distortion on the transmitted signal. Each class yields a simplified channel model, valid
within given assumptions. These assumptions involve also the signal bandwidth and duration,
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so that they are relative with respect to the transmitted signal. The same physical channel
may fall in different classes and be modeled in different ways according to the type of signals
employed.

If Td ¿ T , the duration of the output signal y(t) is about T + Td ≈ T , i.e. the channel does
not “spread” the signal in time. On the contrary, if this condition is not satisfied, the channel
is said to be dispersive in time. If Bd ¿ W , the bandwidth of y(t) is about W + Bd ≈ W ,
i.e. the channel does not “spread” the signal in frequency. On the contrary, if this condition is
not satisfied, the channel is said to be dispersive in frequency. In almost all terrestrial wireless
applications, Bd ranges between 0 and some hundreds of Hz, while W ranges from some tens of
kHz to some MHz. For this reason, we shall restrict our discussion to frequency non-dispersive
channels. 4

The time interval ∆tc beyond which the channel decorrelates in time (i.e. for which |φ(∆t, τ)| '
0 for ∆t ≥ ∆tc) is called coherence time and it is roughly given by ∆tc ≈ 1/Bd. For T ¿ 1/Bd,
the channel appears as random but time-invariant over the signal duration. Otherwise, the
channel time variations cause multiplicative distortion and the channel is said to be time-
selective. The frequency interval ∆fc beyond which the channel decorrelates in frequency (i.e.,
for which |Φ(0, ∆f)| ' 0 for ∆f ≥ ∆fc) is called coherence bandwidth and it is roughly given by
∆fc ≈ 1/Td. For W ¿ 1/Td, the channel appears as random but frequency-flat over the signal
bandwidth. Otherwise, the channel frequency variations cause linear distortion and the channel
is said to be frequency-selective.

Time non-dispersive fading: memoryless channel. If Td ¿ T , a train of pulses of duration
approximately T will not suffer from intersymbol interference (ISI), since after convolution with
c(t, τ) the received pulses overlap on intervals of duration Td that is negligible with respect to
the pulse duration T . This yields a simplified memoryless channel model, where the output over
an interval of duration T (conditioned with respect to the channel impulse response) depends
only on the input over the same interval, irrespectively of the past and without affecting the
future.

If W ≈ 1/Td, the channel is frequency-selective. This condition, together with Td ¿ T ,
implies that W À 1/T . Therefore, frequency-selectivity with time non-dispersive channels may
occur only for spread signals (i.e., those signals for which W À 1/T ).

Time dispersive fading: ISI channel. If Td is not negligible with respect to T , a train of pulses
of duration T will suffer from ISI, since after convolution with c(t, τ) the received pulses overlap.
In this case, the channel has memory even if conditioned with respect to the channel impulse
response. Time dispersion implies frequency selectivity, since conditions T ≈ Td and W ¿ 1/Td

are not compatible, as WT is always greater than 1.

Table 1 summarizes the classes of fading channels examined above and the corresponding
compatible signals. For each case, the channel can be either time-selective or not, depending on
the product BdT .

4This is not the case for other applications, like for example the underwater acoustic channel.
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Td ¿ T (memoryless) Td ≈ T (ISI)
W ¿ 1/Td (freq. flat) any signal impossible

W ≈ 1/Td (freq. selective) spread signal any signal

Table 1: Classes of fading channels and compatible signal types.

1.5 Fading gain statistics

In this section we focus on the first-order statistics of the amplitude and power gains of a
single-path channel with impulse response

c(t, τ) = c(t)δ(τ − τ0)

This is an example of time non-dispersive, frequency non-selective channel. In fact, the received
signal y(t) = c(t)x(t−τ0) is just a delayed version of the transmit signal with some multiplicative
distortion. For a given t, we define the instantaneous amplitude and power channel gains by
α(t) = |c(t)| and g(t) = |c(t)|2, respectively. We fix the time instant t and focus on the random
variables α = α(t) and g = g(t). Because of wise-sense stationarity, the probability density
functions (pdf) of α and g are independent of t.

For the channel examined in the previous sections, c(t) ∼ NC(0, Ω) where Ω = E[|c(t)|2] is the
average path power gain. In this case, α is Rayleigh distributed as

pα(z) =
2z

Ω
exp(−z2/Ω) (16)

and g is exponentially distributed as

pg(z) =
1
Ω

exp(−z/Ω) (17)

Rayleigh fading is typically originated by a large number of scattering elements, each contribut-
ing for a small fraction of the total received signal power, as in the case examined until now.
However, there are other important situations, motivated by different physical propagation con-
ditions, where the channel gain statistics are different. In the following, we review briefly the
most important cases.

Rician fading. If there is a direct LOS propagation path between transmitter and receiver in
addition to a large number of scattering elements, c(t) ∼ NC(u, σ2). The non-zero mean u is due
to the direct LOS path, while the variance σ2 is due to scattering, as before. By letting again
Ω = E[|c(t)|2] = σ2 + |u|2 and by defining the ratio K = |u|2/σ2 between the average LOS to
scattered power, we can write the pdf of α and g as

pα(z) =
2(1 + K)z

Ω
exp

(
−1 + K

Ω

(
z2 +

ΩK

1 + K

))
I0

(
2z

√
K(1 + K)

Ω

)
(18)

and

pg(z) =
1 + K

Ω
exp

(
−1 + K

Ω

(
z +

ΩK

1 + K

))
I0

(
2

√
zK(1 + K)

Ω

)
(19)
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where I0(z) is the 0-th order modified Bessel function of the first kind [8]. Pdfs (18) and (19)
are called Rice and non-central chi-squared with two degrees of freedom, and K is called Rician
factor. The two extreme of Rayleigh fading (no LOS component) and no fading (no scattered
component) are obtained as special cases of Rician fading for K = 0 and K →∞, respectively.
Fig. 5 shows the Rice pdf for some values of K.

Log-normal shadowing. Another effect observed in propagation measurements of mobile wire-
less channels is the so-called shadowing, caused by obstacles like trees, hills or buildings, that
do not scatter the signal but attenuate the received signal power. Rayleigh (or Rician) fading
varies quite rapidly with respect to shadowing. For example, the coherence time of a mobile
with Doppler spread Bd = 100 Hz is about 1/Bd = 10 ms. On the contrary, the receiver may
stay in the shadow of some obstacle for some seconds. Therefore, “short-term” fading due to
scattering and “long-term” shadowing act on different time scales.

Experiments and propagation analysis shows that in the far-field of the transmit antenna, the
long-term attenuation for ground propagation is proportional to ζd−α, where d is the distance
between transmitted and receiver, α is an exponent that depends on the ground physical char-
acteristics and ranges typically from 2 to 4 and ζ is a log-normal random variable [9] such that
E[ζ] = 1. In particular, it is customary to express ζ in dB, so that

10 log10 ζ ∼ N

(
−s2 log 10

20
, s2

)

The standard deviation s, expressed in dB, is called shadowing factor and normally ranges from
2 to 8 dB.

Nakagami fading. Nakagami pdfs often offer the best fit of experimental data (see [10] and
reference therein).

• Nakagami-q (satellite links subject to strong ionospheric scintillation).

pα(z) =
(1 + q2)z

qΩ
exp

(
−(1 + q2)2z2

4q2Ω

)
I0

(
(1− q4)z2

4q2Ω

)

pg(z) =
(1 + q2)

2qΩ
exp

(
−(1 + q2)2z

4q2Ω

)
I0

(
(1− q4)z

4q2Ω

)
(20)

for 0 ≤ q ≤ 1.

• Nakagami-n: same as Rice with n2 = K.

• Nakagami-m (land mobile, indoor channels, ionospheric radio links).

pα(z) =
2mmz2m−1

ΩmΓ(m)
exp

(
−mz2

Ω

)

pg(z) =
mmzm−1

ΩmΓ(m)
exp

(
−mz

Ω

)
(21)

for 1/2 ≤ m ≤ ∞ (Γ(x) denotes the Gamma function [8]).

Figs. 6 and 7 show the Nakagami-q and -m pdfs for some values of q and m.

Wireless Communications and Propagation Aspects 
 

RTO-EN-IST-070 4 - 13 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

K=0 

K=2 

K=4 

K=10 

K=100 

Figure 5: Rice pdf for some values of K and Ω = 1.

Composite channels. In some applications, propagation conditions change at a rate much
slower than the coherence time of fading. These effects are modeled by a channel state variable S
that ranges over a number of possible channel states, corresponding to different fading statistics.
The channel state variable remains in a given state for some time (dwell time) and changes
according to some random or deterministic rule.

For example, in low-Earth orbit (LEO) satellite systems, propagation may have a LOS path or
be blocked by objects. In the first case, the channel is Rice with average power gain Ω and fairly
large parameter K, since the scattered component is normally very weak. In the second case,
the channel is Rayleigh with average power ζΩ, where ζ is log-normal. In [4], results from field
measurements are collected and a two-state Markov model fitting the measurements is proposed.
The channel state variable S takes on two possible values: a “good” state (Ricean channel) and
a “bad” state (Rayleigh channel with log-normal average power). The transitions between good
and bad states are governed by a two-state Markov chain, whose transition probabilities are
calculated in order to fit the measurements. The dwell time in both states is much larger than
the fading coherence time, so that in each state several realizations of the instantaneous channel
gain occur.

Wireless Communications and Propagation Aspects  

4 - 14 RTO-EN-IST-070 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q=0 

q=0.1 

q=0.5 

q=1 

Figure 6: Nakagami-q pdf for some values of q and Ω = 1.
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Figure 7: Nakagami-m pdf for some values of m and Ω = 1.
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2 MIMO channel modeling

This chapter presents an introduction to the mathematical modeling of time varying linear
Multiple Input Multiple Output (MIMO) wireless channels. The material is based on the new
approach devised in [11, 12] based on the principle of maximum entropy.

2.1 Channel Modelling Methodology

In this chapter, we provide a methodology (already successfully used in Bayesian spectrum
analysis [13, 14]) for inferring on channel models. The goal of the modelling methodology is
twofold:

• to define a set of rules, called hereafter consistency axioms, where only our state of knowl-
edge needs to be defined.

• to use a measure of uncertainty, called hereafter entropy, in order to avoid the arbitrary
introduction or assumption of information that is not available.

In other words, if two published papers make the same assumptions in the abstract (concrete
buildings in Oslo where one avenue...), then both papers should provide the same channel model.

To achieve this goal, in all this document, the following procedure will be applied: every time
we have some information on the environment (and not make assumptions on the model !), we
will ask a question based on that the information and provide a model taking into account that
information and nothing more! The resulting model and its compliance with later test mea-
surements will justify whether the information used for modelling was adequate to characterize
the environment in sufficient details. Hence, when asked the question, ”what is the consistent
model one can make knowing the directions of arrival, the number of scatterers, the fact that
each path has zero mean and a given variance?” we will suppose that the information provided
by this question is unquestionable and true i.e the propagation environment depends on fixed
steering vectors, each path has effectively zero mean and a given variance. We will suppose that
effectively, when waves propagate, they bounce onto scatterers and that the receiving antenna
sees these ending scatterers through steering directions. Once we assume this information to be
true, we will construct the model based on Bayesian tools.5.
To explain this point of view, the author recalls an experiment made by his teacher during a
tutorial explanation on the duality behavior of light: photon or wave. The teacher took two
students of the class, called here A and B for simplicity sake. To student A, he showed view (1’)
(see Figure 8) of a cylinder and to student B, he showed view (2’) of the same cylinder. For A,
the cylinder was a circle and for B, the cylinder was a rectangle. Who was wrong? Well, nobody.
Based on the state of knowledge (1’), representing the cylinder as a circle is the best one can
do. Any other representation of the cylinder would have been made on unjustified assumptions
(the same applies to view (2’)). Unless we have another state of knowledge (view (3’)), the true
nature of the object will not be found.

Our channel modelling will not pretend to seek reality but only to represent view (1’) or
view (2’) in the most accurate way (i.e if view (1’) is available then our approach should lead

5Note that in Bayesian inference, all probabilities are conditional on some hypothesis space (which is assumed
to be true).

Wireless Communications and Propagation Aspects  

4 - 16 RTO-EN-IST-070 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

(1) (2)

(1’)

(2’)

(3’)

Figure 8: Duality wave-corpuscule?

into representing the cylinder as a circle and not as a triangle for example). If the model fails
to comply with measurements, we will not put into doubt the model but conclude that the
information we had at hand to create the model was insufficient. We will take into account
the failure as a new source of information and refine/change our question in order to derive a
new model based on the principle of maximum entropy which complies with the measurements.
This procedure will be routinely applied until the right question (and therefore the right answer)
is found. When performing scientific inference, every question asked, whether right or wrong,
is important. Mistakes are eagerly welcomed as they lead the path to better understand the
propagation environment. Note that the approach devised here is not new and has already been
used by Jaynes [15] and Jeffrey [16]. We give hereafter a summary of the modelling approach:

1. Question selection: the modeler asks a question based on the information available.

2. Construct the model: the modeler uses the principle of maximum entropy (with the
constraints of the question asked) to construct the model Mi.

3. Test: (When complexity is not an issue) The modeler computes the a posteriori probability
of the model and ranks the model (see chapter.??)

4. Return to 1.: The outcome of the test is some ”new information” evidence to keep/refine/change
the question asked. Based on this information, the modeler can therefore make a new model
selection.

This algorithm is iterated as many times as possible until better ranking is obtained. However,
we have to alert the reader on one main point: the convergence of the previous algorithm is
not at all proven. Does this mean that we have to reject the approach? we should not because
our aim is to better understand the environment and by successive tests, we will discard some
solutions and keep others.
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Tx Rx

Figure 9: MIMO channel representation.

We provide hereafter a brief historical example to highlight the methodology. In the context
of spectrum estimation, the Schuster periodogram (also referred in the literature as the discrete
Fourier transform power spectrum) is commonly used for the estimation of hidden frequencies
in the data. The Schuster periodogram is defined as:

F (ω) =
1
N
|

N∑

k=1

ske
−jωtk |2

sk is the data of length N to be analyzed. In order to find the hidden frequencies in the
data, the general procedure is to maximize F (ω) with respect to ω . But as in our case,
one has to understand why/when to use the Schuster periodogram for frequency estimation.
The Schuster periodogram answers a specific question based on a specific assumption (see the
work of Bretthorst [14]). In fact, it answers the following question: ”what is the optimal
frequency estimator for a data set which contains a single stationary sinusoidal frequency
in the presence of Gaussian white noise?” From the standpoint of Bayesian probability, the
discrete Fourier Transform power spectrum answers a specific question about single (and not
two or three....) stationary sinusoidal frequency estimation. Given this state of knowledge, the
periodogram will consider everything in the data that cannot be fit to a single sinusoid to be
noise and will therefore, if other frequencies are present, misestimate them. However, if the
periodogram does not succeed in estimating multiple frequencies, the periodogram is not to
blame but only the question asked! One has to devise a new model (a model maybe based on a
two stationary sinusoidal frequencies?). This new model selection will lead to a new frequency
estimator in order to take into account the structure of what was considered to be noise. This
routine is repeated and each time, the models can be ranked to determine the right number of
frequencies.

2.2 Constraints

The transmission is assumed to take place between a mobile transmitter and receiver. The
transmitter has nt antennas and the receiver has nr antennas. Moreover, the input transmitted
signal is assumed to go through a time variant linear filter channel. Finally, the interfering noise
is supposed to be additive white Gaussian.

The transmitted signal and received signal are related as:
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y(t) =
√

ρ

nt

∫
Hnr×nt(t, τ)x(t− τ)dτ + n(t) (22)

and

Y (f, t) =
√

ρ

nt
Hnr×nt(f, t)X(f) + N(f) (23)

ρ is the received SNR, Y (f) is the nr × 1 received vector (Fourier transform of the time signal
y(t)), X(f) is the nt × 1 transmit vector (Fourier transform of the time signal x(t)), N(f) is an
nr × 1 additive standardized white Gaussian noise vector (Fourier transform of n(t)).
In this section, we will only be interested in the frequency domain modeling (knowing that the
impulse response matrix can be accessed through an inverse Fourier transform). We6would like
to provide some theoretical grounds to model the frequency response matrix H(f, t) based on a
given state of knowledge. In other words, knowing only certain things related to the channel (Di-
rections of Arrival (DoA), Directions of Departure (DoD), bandwidth, center frequency, number
of transmitting and receiving antennas, number of chairs in the room...), how to attribute a
joint probability distribution to the entries hij(f, t) of the matrix:

H(f, t) =




h11(f, t) . . . . . . h1nt(f, t)
... . . . . . .

...
... . . . . . .

...
hnr1(f, t) . . . . . . hnrt(f, t)




(24)

Here, we describe the MIMO link by a statistical model which takes into account our infor-
mation of the environment. In this contribution, the goal is to derive a model which is adequate
with our state of knowledge. A measure of uncertainty is needed which expresses the constraints
of our knowledge and the desire to leave the unknown parameters to lie in an unconstraint space.
To this end, many possibilities are offered to express our uncertainty. However, we need an in-
formation measure which is consistent (complying to certain common sense desiderata, see [19]
to express these desiderata and for the derivation of entropy) and easy to manipulate: we need a
simple general principle for translating information into probability assignment. Entropy is the
measure of information that fulfills this criteria. The principle of maximum entropy states that,
if P is the distribution of a random variable x, one should maximize the following functional
under the state of information constraints:

D(P ) = −
∫

P (x)log (P (x)) dx

Let us give an example in the context of spectral estimation of the powerful feature of the
maximum entropy approach which has inspired this work. Suppose a stochastic process xi for
which p+1 autocorrelation values are known i.e E(xixi+k) = τk, k = 0, ..., p for all i. What is the

6It was the work of Telatar [17] (later published as [18]) that triggered research in multi-antenna systems. For
contribution [18], Telatar received the 2001 Information Theory Society Paper Award. After the Shannon
Award, the IT Society Paper Award is the highest recognition award by the IT society.
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consistent model one can make of the stochastic process based only on that state of knowledge,
in other words the model which makes the least assumption on the structure of the signal?
The maximum entropy approach creates for us a model and shows that, based on the previous
information, the stochastic process is a pth auto-regressive (AR) order model process of the form
[20]:

xi = −
p∑

k=1

akxi−k + bi

where the bi are i.i.d. zero mean Gaussian distributed with variance σ2 and a1, a2, .., ap are
chosen to satisfy the autocorrelation constraints (through Yule-Walker equations).

In this section, we will provide guidelines for creating models from an information theoretic
point of view and therefore make extensive use of the principle of maximum entropy.

2.2.1 Gaussian i.i.d. channel model

In this section, we give a precise justification on why and when the Gaussian i.i.d. model should
be used7. We recall the general model:

Y =
√

ρ

nt
HX + N

Imagine now that the modeler is in a situation where he has no measurements and no knowl-
edge where the transmission took place. The only thing the modeler assumes is that the channel
carries some energy, in other words, each complex frequency path has a certain variance σ2.
Knowing only this information, the modeler is faced with the following question: what is the
consistent model one can make assuming only the variance (but not the correlation even though
it may exist) of the path gains? In other words, based on the fact that: For all i, j,

∫
dH | hij |2 P (H) = σ2 (Finite energy assumption) (25)
∫

dP (H) = 1 (P(H) is a probability distribution) (26)

what distribution P (H) should the modeler assign to the channel? The modeler would like to
derive the most general model complying with those constraints, in other words the one which
maximizes our uncertainty while being certain of the mean and the variance. This statement can
simply be expressed if one tries to maximize the following expression using Lagrange multipliers
with respect to P :

L(P ) = −
∫

dHP (H)logP (H) +
nr∑

i=1

nt∑

j=1

γij [σ2 −
∫

dH | hij |2 P (H)]

+β

[
1−

∫
dHP (H)

]

7The title insists on purpose on the fact that the Gaussian i.i.d. channel is a model and not an assumption.
There is a fundamental difference between the two as the author will try to explain hereafter.

Wireless Communications and Propagation Aspects  

4 - 20 RTO-EN-IST-070 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

If we derive L(P ) with respect to P , we get:

dL(P )
dP

= 0 ⇔ −1− logP (H)−
nr∑

i=1

nt∑

j=1

γij | hij |2 −β = 0

then this yields:

P (H) = e−(β+1+
∑nr

i=1

∑nt
j=1 γij |hij |2)

= e−(β+1)
nr∏

i=1

nt∏

j=1

exp−(γij | hij |2)

=
nr∏

i=1

nt∏

j=1

P (hij)

with
P (hij) = e

−(γij |hij |2+ β+1
nrnt

)
.

One of the most important conclusions of the maximum entropy principle is that while we
have only assumed the variance, these assumptions imply independent entries since the joint
probability distribution P (H) simplifies into products of P (hij). Therefore, based on the previ-
ous state of knowledge, the only maximizer of the entropy is the i.i.d. one. This does not mean
that we have supposed independence in the model. In the generalized L(P ) expression, there
is no constraint on the independence: if correlations exist, then the model will try to cope as
best it can with this case because it is the one which makes the least assumption on the channel
distribution. Independence is not at all an assumption but only the result of the maximum
entropy principle. Instead of saying that the i.i.d. model does not contain correlation, it should
be more correct to say as in [15] that this probability density function makes allowance for every
possible correlation that could be present to exist and so is less informative than correlated
distributions. Another surprising result is that the distribution achieved is Gaussian. Once
again, gaussianity is not an assumption but a consequence of the fact that the channel has finite
energy. The previous distribution is the least informative probability density function that is
consistent with the previous state of knowledge. When only the variance of the channel paths
are known (but not the frequency bandwidth, nor knowledge of how waves propagate, nor the
fact that scatterers exist...) then the only consistent model one can make is the Gaussian i.i.d
model.
In order to fully derive P (H), we need to calculate the coefficients β, γij , αij . The coefficients
are solutions of the following constraint equations: For all i, j,

∫
dH | hij |2 P (H) = σ2

∫
dHP (H) = 1

Solving the previous equations yields the following probability distribution:

P (H) =
1

(πσ2)nrnt
exp{−

nr∑

i=1

nt∑

j=1

| hij |2
σ2

}
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Of course, if one has any additional knowledge, then this information should be integrated in
the L(P ) criteria and would lead to a different result.
As a typical example, suppose that the modeler knows that each frequency path has different
variances such as E(| hij |2) = σij

2. Using the same methodology, it can be shown that :

P (H) =
nr∏

i=1

nt∏

j=1

P (hij)

with P (hij) = 1
πσ2

ij
e
− |hij |2

σ2
ij . The principle of maximum entropy still attributes independent

Gaussian entries to the channel matrix but with different variances.
Suppose now that the modeler knows that the path hpk has a mean equal to E(hpk) = µpk

and variance E(| hpk − µpk |2) = σ2
pk, all the other paths having different variances (but nothing

is said about the mean). Using as before the same methodology, we show that:

P (H) =
nr∏

i=1

nt∏

j=1

P (hij)

with for all {i, j, (i, j) 6= (p, k)} P (hij) = 1
πσ2

ij
e
− |hij |2

σ2
ij and P (hpk) = 1

πσ2
pk

e
− |hpk−µpk|2

σ2
pk . Once

again, different but still independent Gaussian distributions are attributed to the MIMO chan-
nel matrix.

The previous examples can be extended and applied whenever a modeler has some new source
of information in terms of expected values on the propagation environment. In the general
case, if N constraints are given on the expected values of certain functions

∫
gi(H)P (H)dH = αi

for i = 1...N , then the principle of maximum entropy attributes the following distribution:

P (H) = e(−1+λ+
∑N

i=1 λigi(H))

where the values of λ and λi (for i = 1..N) can be obtained by solving the constraint equations.
This model is called a pre-data model [15] in the Bayesian lexicography, in the sense that

without knowing anything about the measured data, the best model one can make (best in
the sense of maximizing our uncertainty with respect to certain conditions which we know are
fulfilled) is the Gaussian i.i.d. model8.

2.3 Double directional model

The modeler wants to derive a consistent model taking into account the directions of arrival
and respective power profile, directions of departure and respective power profile, delay, Doppler
effect. As a starting point, the modeler assumes that the position of the transmitter and receiver

8Using the maximum entropy principle to describe wave propagation has also been advocated recently. In
”The Role of Entropy in Wave Propagation” [21], Franceshetti et al. show that the probability laws that
describe electromagnetic magnetic waves are simply maximum entropy distributions with appropriate moment
constraints. They suggest that in the case of dense lattices, where the inter-obstacle hitting distance is small
compared to the distance travelled, the relevant metric is non-Euclidean whereas in sparse lattices, the relevant
metric becomes Euclidean as propagation is not constrained along the axis directions.
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changes in time. However, the scattering environment (the buildings, trees,...) does not change
and stays in the same position during the transmission. Let vt and vr be respectively the vector
speed of the transmitter and the receiver with respect to a terrestrial reference. Let st

ij be the
signal between the transmitting antenna i and the first scatterer j. Assuming that the signal
can be written in an exponential form (plane wave solution of the Maxwell equations) and is
narrowband, then:

st
ij(t) = s0e

j(kt
ij(vtt+dij)+2πfct)

= s0e
j2π(

fcu
t
ijvt

c
t+fct)ejψij

Here, fc is the carrier frequency, dij is the initial vector distance between antenna i and
scatterer j (ψij = kt

ij .dij is the scalar product between vector kt
ij and vector dij), kt

ij is such as
kt

ij = 2π
λ ut

ij = 2πfc

c ut
ij . The quantity 1

2πkt
ijvt represents the Doppler effect.

In the same way, if we define sr
ij(t) as the signal between the receiving antenna j and the

scatterer i, then:

sr
ij(t) = s0e

j(2π(
fcvrur

ij
c

t+fct))ejφij

In all the following, the modeler supposes as a state of knowledge the following parameters:

• speed vr.

• speed vt.

• the angle of departure from the transmitting antenna to the scatterers ψij and power P t
j .

• the angle of arrival from the scatterers to the receiving antenna φij and power P r
j .

The modeler has however no knowledge of what happens in between except the fact that a signal
going from a steering vector of departure j to a steering vector of arrival i has a certain delay τij

due to possible single bounce or multiple bounces on different objects. The modeler also knows
that objects do not move between the two sets of scatterers. The sr × st delay matrix linking
each DoA and DoD has the following structure:

Dsr×st(f) =




e−j2πfτ1,1 . . . e−j2πfτ1,st

...
. . .

...
e−j2πfτsr,1 . . . e−j2πfτsr,st




The modeler also supposes as a given state of knowledge the fact that each path hij of matrix
H has a certain power. Based on this state of knowledge, the modeler wants to model the sr×st

matrix Θsr×st in the following representation:
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Tx Rx

ΨΘs×s1Φ

Figure 10: Moving antennas.

H(f, t) =
1√
stsr




ej(φ1,1+2π
fur

11vr
c

t) . . . ej(φ1,sr+2π
fur

1sr
vr

c
t)

...
. . .

...

ej(φnr,1+2π
fur

nr1vr

c
t) . . . ej(φnr,sr+2π

fur
nrsrvr

c
t)







P r
1 0 . . .

0
. . . 0

... 0 P r
sr




Θsr×st

⊙
Dsr×st(f)




P t
1 0 . . .

0
. . . 0

... 0 P t
st







ej(ψ1,1+2π
fut

11vt
c

t) . . . ej(ψ1,nt+2π
fut

1nt
vt

c
t)

...
. . .

...

ej(ψst,1+2π
fut

s11vt

c
t) . . . ej(ψst,nt+2π

fut
stnt

vt

c
t)




⊙
represents the Hadamard product defined as cij = aijbij for a product matrix C = A

⊙
B.

It is straightforward to see that Θsr×st i.i.d. zero mean Gaussian with variance 1 maximizes
entropy under the previous constraints.

Remark A question the reader could ask is whether we should take into account all the in-
formation provided, in other words, why have we limited ourselves since the beginning to the
variance of each path? We should of course take into account all the available information but
there is a compromise to be made in terms of model complexity. Each information added will
not have the same effect on the channel model and might as well more complicate the model for
nothing than bring useful insight on the behavior of the propagation environment. To assume
further information by putting some additional structure would not lead to incorrect predic-
tions: however, if the predictions achieved with or without the details are equivalent, then this
means that the details may exist but are irrelevant for the understanding of our model9. As
a typical example, when conducting iterative decoding analysis [22], Gaussian models of priors
are often sufficient to represent our information. Inferring on other moments and deriving the
true probabilities will only complicate the results and not yield a better understanding.

9Limiting one’s information is a general procedure that can be applied to many other fields. As a matter of
fact, the principle ”one can know less but understand more” seems the only reasonable way to still conduct
research considering the huge amount of papers published each year.
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Remark In the case of a one antenna system link (nr = 1 and nt = 1), we obtain:

H(f, t) =
1√
srst

[
ej(φ1+2π

fur
1vr
c

t) . . . ej(φs+2π
fur

sr
vr

c
t)

]



P r
1 0 . . .

0
. . . 0

... 0 P r
sr




Θsr×st

⊙
Dsr×st(f)




P t
1 0 . . .

0
. . . 0

... 0 P t
st







ej(ψ1+2π
fut

1vt
c

t)

...

ej(ψst+2π
fut

st
vt

c
t)




=
1√
srst

[ ∑sr
k=1 θk,1P

r
k ej(φk+2π

fur
kvr
c

t)e−j2πfτk,1 . . .
∑sr

k=1 θk,stP
r
k ej(φk+2π

fur
kvr
c

t)e−j2πfτk,st

]




P t
1 0 . . .

0
. . . 0

... 0 P t
st







ej(ψ1+2π
fut

1vt
c

t)

...

ej(ψst+2π
fut

st
vt

c
t)




=
1√
srst

st∑

l=1

sr∑

k=1

θk,lP
r
k P t

l e
j(φk+2π

fur
kvr
c

t)ej(ψl+2π
fut

lvt
c

t)e−j2πfτk,l

This relation is a generalization of equation 7 in the case of multifold scattering with the
power profile taken into account.

If more information is available on correlation or different variances of frequency paths, then
this information can be incorporated in the matrix Dsr×st , also known as the channel pattern
mask [23]. Note that in the case of a ULA geometry (Uniform Linear Array) and in the Fourier
directions, we have ur

ij = ur
j (any column of matrix Φ has a given direction) and ut

ij = ut
i (any

line of matrix Ψ has a given direction). Therefore, the channel model simplifies to:

H(f, t) =
1√
srst




1 . . . 1
...

. . .
...

ej2π
d(nr−1) sin(φ1)

λ . . . ej2π
d(nr−1) sin(φsr )

λ


Θsr×st

⊙
Dsr×st(f, t)




1 . . . ej2π
d(nt−1) sin(ψ1)

λ

...
. . .

...

1 . . . ej2π
d(nt−1) sin(ψst )

λ




In this case, the pattern mask Dsr×st has the following form:

Dsr×st(f, t) =




P r
1 P t

1e
−j2πfτ1,1ej2π ft

c
(ur

1vr+ut
1vt) . . . P r

1 P t
st

e−j2πfτ1,st ej2π ft
c

(ur
1vr+ut

st
vt)

...
. . .

...

P r
sr

P t
1e
−j2πfτsr,1ej2π ft

c
(ur

srvr+ut
1vt) . . . P r

sr
P t

s1
e−j2πfτsr,st ej2π ft

c
(ur

srvr+ut
st

vt)




Although we take into account many parameters, the final model is quite simple. It is the
product of three matrices: Matrices Φ and Ψ taking into account the directions of arrival and
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departure; matrix Θsr×st

⊙
Dsr×st which is an independent Gaussian matrix with different

variances. The frequency selectivity of the channel is therefore taken into account in the phase
of each entry of the matrix Θsr×st

⊙
Dsr×st(f, t).

Remark Let us show that the spatial statistics of H(f) are independent of f . Since H(f) is
Gaussian, all the statistics are described by the mean and the covariance matrix.

• Mean: Since the entries of matrix Θ have zero mean,

EΘ(hij) =
1√
srst

st∑

k=1

sr∑

p=1

E(θpk)Pk
tPp

rej2πfτpkejψkjejφip = 0

for every i,j and the mean of H(f) is therefore independent of f .

• Covariance: let us derive Cov(i, j,m, n, f) = EΘ(hij(f)h∗mn(f)):

Cov(i, j,m, n, f) =
1

srst

st∑

k=1

sr∑

p=1

st∑

q=1

sr∑

l=1

E(θpkθ
∗
ql)e

j2πf(τpk−τql)

P t
kP

∗t
qP

r
p P ∗r

l e
j2π(ψkj−ψqn)ej2π(φip−φml)

Since E(θpkθ
∗
ql) = δpqδkl, then :

Cov(i, j,m, n, f) =
1

srst

st∑

k=1

sr∑

p=1

| P t
k |2| P r

p |2 ej2π(ψkj−ψkn)ej2π(φip−φmlp)

which is independent of f .

2.4 Other Models

2.4.1 Müller’s Model

In a paper ”A Random Matrix Model of Communication via Antenna Arrays” [24], Müller
develops a channel model based on the product of two random matrices:

H = ΦAΘ

where Φ and Θ are two random matrices with zero mean unit variance i.i.d entries and A is a
diagonal matrix (representing the attenuations). This model is intended to represent the fact
that each signal bounces off a scattering object exactly once. Φ represents the steering directions
from the scatterers to the receiving antennas while Θ represents the steering directions from
the transmitting antennas to the scatterers. Measurements in [24] confirmed the model quite
accurately. Should we conclude that signals in day to day life bounce only once on the scattering
objects?

With the maximum entropy approach developed in this contribution, new insights can be
given on this model and explanations can be provided on why Müller’s model works so well. In
the maximum entropy framework, Müller’s model can be seen as either:
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• a DoA based model with random directions i.e matrix Φ with different powers (represented
by matrix A) for each angle of arrival. In fact, the signal can bounce freely several times
from the transmitting antennas to the final scatterers (matrix Θ). Contrary to past belief,
this model takes into account multi-fold scattering and answers the following question from
a maximum entropy standpoint: what is the consistent model when the state of knowledge
is limited to:

– Random directions scattering at the receiving side.

– Each steering vector at the receiving side has a certain power.

– Each frequency path has a given variance.

• a corresponding DoD based model with random directions i.e matrix Θ with different
powers (represented by matrix A) for each angle of departure. The model permits also in
this case the signal to bounce several times from the scatterers to the receiving antennas.
From a maximum entropy standpoint, the model answers the following question: what is
the consistent model when the state of knowledge is limited to:

– Random directions scattering at the transmitting side.

– Each steering vector at the transmitting side has a certain power.

– Each frequency has zero mean and a certain variance.

• DoA-DoD based model with random directions where the following question is answered:
What is the consistent model when the state of knowledge is limited to:

– Random directions scattering at the receiving side.

– Random directions scattering at the transmitting side.

– Each angle of arrival is linked to one angle of departure.

As one can see, Müller’s model is broad enough to include several maximum entropy directional
models and this fact explains why the model complies so accurately with the measurements
performed in [25]

2.4.2 Sayeed’s Model

In a paper ”Deconstructing Multi-antenna Fading Channels” [26], Sayeed proposes a virtual
representation of the channel. The model is the following:

H = AnrSAnt
H

Matrices Anr and Ant are discrete Fourier matrices and S is a nr × nt matrix which represents
the contribution of each of the fixed DoA’s and DoD’s. The representation is virtual in the
sense that it does not represent the real directions but only the contribution of the channel
to those fixed directions. The model is somewhat a projection of the real steering directions
onto a Fourier basis. Sayeed’s model is quite appealing in terms of simplicity and analysis
(it corresponds to the Maxent model on Fourier directions). In this case, also, we can revisit
Sayeed’s model in light of our framework. We can show that every time, Sayeed’s model answers
a specific question based on a given assumption.
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• Suppose matrix S has i.i.d zero mean Gaussian entries then Sayeed’s model answers the
following question: what is the consistent model for a ULA when the modeler knows that
the channel carries some energy, the DoA and DoD are on Fourier directions but one does
not know what happens in between.

• Suppose now that matrix S has a certain correlation structure then Sayeed’s model answers
the following question: what is the consistent model for a ULA when the modeler knows
that the channel carries some energy, the DoA and DoD are on Fourier directions but
assumes that the paths in between have a certain correlation.

As one can see, Sayeed’s model has a simple interpretation in the maximum entropy frame-
work: it considers a ULA geometry with Fourier directions each time. Although it may seem
strange that Sayeed limits himself to Fourier directions, we do have an explanation for this
fact. In his paper [23], Sayeed was mostly interested in the capacity scaling of MIMO channels
and not the joint distribution of the elements. From that perspective, only the statistics of the
uncorrelated scatterers is of interest since they are the ones which scale the mutual information.
The correlated scatterers have very small effect on the information. In this respect, we must
admit that Sayeed’s intuition is quite impressive. However, the entropy framework is not limited
to the ULA case (for which the Fourier vector approach is valid) and can be used for any kind
of antenna and field approximation. One of the great features of the maximum entropy (which
is not immediate in Sayeed’s representation) approach is the quite simplicity for translating any
additional physical information into probability assignment in the model. A one to one map-
ping between information and model representation is possible. With the maximum entropy
approach, every new information on the environment can be straightforwardly incorporated and
the models are consistent: adding or retrieving information takes us one step forward or back
but always in a consistent way. The models are somewhat like Russian dolls, imbricated one
into the other.

2.4.3 The ”Kronecker” model

In a paper ”Capacity Scaling in MIMO Wireless Systems Under Correlated fading”, Chuah et
al. study the following Kronecker 10 model:

H = Rnr

1
2 ΘRnt

1
2

Here, Θ is an nr × nt i.i.d zero mean Gaussian matrix, Rnr

1
2 is an nr × nr receiving correlation

matrix while Rnt

1
2 is a nt × nt transmitting correlation matrix. The correlation is supposed to

decrease sufficiently fast so that Rnr and Rnt have a Toeplitz band structure. Using a software
tool (Wireless System Engineering [29]), they demonstrate the validity of the model. Quite
remarkably, although designed to take into account receiving and transmitting correlation, the
model developed in the paper falls within the double directional framework. Indeed, since Rnr

and Rnt are band Toeplitz then these matrices are asymptotically diagonalized in a Fourier basis

Rnr ∼ FnrΛnrF
H
nr

10The model is called a Kronecker model because E(vec(H)Hvec(H)) = Rnr

⊗
Rnt is a Kronecker product. The

justification of this approach relies on the fact that only immediate surroundings of the antenna array impose
the correlation between array elements and have no impact on correlations observed between the elements of
the array at the other end of the link. Some discussions can be found in [27, 28].
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and
Rnt ∼ FntΛntF

H
nt

.

Fnr and Fnt are Fourier matrices while Λnr and Λnt represent the eigenvalue matrices of Rnr

and Rnt .
Therefore, matrix H can be rewritten as:

H = Rnr

1
2 ΘRnt

1
2

= Fnr

(
Λnr

1
2 Fnr

HΘFntΛnt

1
2

)
Fnt

H

= Fnr

(
Θ1

⊙
Dnr×nt

)
Fnt

H

Θ1 = Fnr
HΘFnt is a nr × nt zero mean i.i.d Gaussian matrix and Dnr×nt is a pattern mask

matrix defined by:

Ds×s1 =




λ
1
2
1,nt

λ
1
2
1,nr

. . . λ
1
2
nt,ntλ

1
2
1,nr

...
. . .

...

λ
1
2
1,nt

λ
1
2
nr,nr . . . λ

1
2
nt,ntλ

1
2
nr,nr




Note that this connection with the double directional model has already been reported in [23].
Here again, the previous model can be reinterpreted in light of the maximum entropy approach.
The model answers the following question: what is the consistent model one can make when
the DoA are uncorrelated and have respective power λi,nr , the DoD are uncorrelated and have
respective power λi,nt , each path has zero mean and a certain variance. The model therefore
confirms the double directional assumption as well as Sayeed’s approach and is a particular case
of the maximum entropy approach. The comments and limitations made on Sayeed’s model are
also valid here.

2.4.4 The ”Keyhole” Model

In [30], Gesbert et al. show that low correlation11 is not a guarantee of high capacity: cases where
the channel is rank deficient can appear while having uncorrelated entries (for example when a
screen with a small keyhole is placed in between the transmitting and receiving antennas). In
[32], they propose the following model for a rank one channel:

H = Rnr

1
2 grgt

HRnt

1
2 (27)

Here, Rnr

1
2 is an nr × nr receiving correlation matrix while Rnt

1
2 is a nt × nt transmitting

correlation matrix. gr and gt are two independent transmit and receiving Rayleigh fading
vectors. Here again, this model has connections with the previous maximum entropy model:

H =
1√
srst

Φnr×srΘsr×stΨst×nt (28)

The Keyhole model can be either:
11”keyhole” channels are MIMO channels with uncorrelated spatial fading at the transmitter and the receiver

but have a reduced channel rank (also known as uncorrelated low rank models). They were shown to arise in
roof-edge diffraction scenarios [31].
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• A double direction model with sr = 1 and Φnr×1 = Rnr

1
2 gr. In this case, gt

HRnt

1
2 =

Θ1×stΨst×nt where Θ1×st is zero mean i.i.d Gaussian.

• A double direction model with st = 1 and Ψ1×nt = gt
HRnt

1
2 . In this case, Rnr

1
2 gr =

Φnr×srΘsr×1 where Θsr×1 is zero mean i.i.d Gaussian.

As one can observe, the maximum entropy model can take into account rank deficient channels.
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